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Nanobacteria: controversial pathogens in nephrolithiasis and

polycystic kidney disease

E. Olavi Kajander®, Neva Ciftcioglu?, Marcia A. Miller-Hjelle® and J. Thomas Hijelle®

Nanobacteria are unconventional agents 100-fold smaller than
common bacteria that can replicate apatite-forming units.
Nanobacteria are powerful mediators of biogenic apatite
nucleation (crystal form of calcium phosphate) and crystal
growth under conditions simulating blood and urine. Apatite is
found in the central nidus of most kidney stones and in mineral
plaques (Randall's plaques) in renal papilla. The direct injection
of nanobacteria into rat kidneys resulted in stone formation in
the nanobacteria-injected kidney during one month follow-up,
but not in the control kidney injected with vehicle. After
intravenous administration in rats and rabbits, nanobacteria are
rapidly excreted from the blood into the urine, as a major
elimination route, and damage renal collecting tubuli.
Nanobacteria are cytotoxic to fibroblasts in vitro. Human kidney
cyst fluids contain nanobacteria. Nanobacteria thus appear to
be potential provocateurs and initiators of kidney stones, tubular
damage, and kidney cyst formation. It is hypothesized that
nanobacteria are the initial nidi on which kidney stone is built up,
at a rate dependent on the supersaturation status of the urine.
Those individuals having both nanobacteria and diminished
defences against stone formation (i.e. genetic factors, diet and
drinking habits) could be at high risk. Kidney cyst formation is
hypothesized to involve nanobacteria-induced tubular damage
and defective tissue regeneration yielding cyst formation, the
extent of which is dependent on genetic vulnerability. Curr Opin
Nephrol Hypertens 10:000-000. © 2001 Lippincott Williams & Wilkins.
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Introduction

Nanobacteria were discovered over 10 years ago as
autonomously replicating biological particles causing
cytotoxicity in mammalian cell cultures [1]. This agent
mediates apatitic calcification in culture. The apatite
produced is biogenic because it is formed in a carbon-
containing biomatrix around the agent, forms small
spherical units of apatite in nanoscale crystal size that
are very resistant to acid hydrolysis, and can be formed at
non-saturating concentrations of calcium and phosphate
[2,3]. Such spherical units were identified in most human
kidney stones examined, were cultured from these
kidney stones, and produced new stones in culture
[4,5]. Calcified and non-calcified forms of nanobacteria
have been observed free in culture and intracellularly in
mammalian cells /2 vitro [4-6]. Calcified nanobacteria are
very resistant to chemical disinfection [7], heat, ultravio-
let and high gamma irradiation, and can survive in a
lyophilized state for extended periods of time [8].

Methods to diagnose nanobacteria in biological sub-
stances, cells, tissues, blood and urine include immuno-
detection with nano-specific monoclonal antibodies,
electron microscopy and culture [6,9]. Susceptibility
tests can be used to test the effects of antibiotics and
other chemotherapeutic agents [10,11°]. The eradication
of nanobacteria from serum and culture media has been
obtained using high gamma irradiation or filtration, and
nanobacteria-free culture media are commercially avail-

able.

The concept that nanobacteria are living organisms is
controversial. The size of nanobacteria is typically only
0.1-0.2 microns, making them 100-fold smaller than
common bacteria. We have explored the concept that,
although relatively small, such particles could be
primitive life forms [1]. In addition, we have sought
alternative concepts, such as nanobacteria or fragments
of nanobacteria being non-living biomineralization
products that are somehow able to multiply with
kinetics similar to life forms [12]. The general debate
continues over the existence of relatively tiny microbes,
which are sometimes generically called nanobacteria
[13,14]. However, our fundamental findings of nano-
bacteria detection and culture have been reproduced all
or partly by several groups [15,16,17°18°°]. Although the
issue of organism status is important, more relevant to
medicine is the following question: are nanobacteria
pathogenic?
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Hovis apatite formed by nanobacteria?

The mechanism(s) by which apatite is formed around
nanobacteria is unknown. However, the effectiveness of
its biomineralization is remarkable: apatite formation 7#
vitro stopped only when the calcium level decreased by
50% from 1.8 to 0.9 mM and the phosphate levels fell to
near zero [19°°]. Nanobacteria could feed on dolomite
[CaMg(CO3),] as a calcium source [20]. Furthermore,
synthetic apatite added to nanobacteria cultures dis-
solved while nanoparticles were accumulating apatite
(our unpublished observation). Nanobacteria-induced
apatitic biofilm formation is dependent on the presence
of oxygen [1,5], can be prevented with several antibiotics
and antimetabolites, and by high gamma irradiation at
sterilizing doses [10,11°].

The mechanism might be similar to bone formation,
which is also not fully understood. Models for bone
formation, which use metastable concentrations of
calcium and phosphate, involve gels that include nidi,
such as matrix vesicles, apoptotic vesicles or collagen,
but exclude the known proteinaceous inhibitors for
crystal formation. Such systems have not been tested
with nanobacteria. Vali & «/ [16] demonstrated that
nanoforms contain apatite—protein complexes and im-
muno-electron microscopy revealed protein antigens in
proximity to apatite, suggesting a novel form of
protein-associated mineralization. Recently, Cisar ef al.
[17°] were able to repeat the propagation of nanobac-
teria-like particles, observed similar kinetics for apatite
mineralization, but could not extract DNA or proteins
from the particles. Their interpretation was that the
particles were self-replicating inorganic apatite. Unfor-
tunately, their work was confounded by the lack of
positive and negative controls, surveillance for nano-
bacterial contamination, metabolic studies, the use of
monoclonal antibodies to identify nanobacteria, and the
contamination of polymerase chain reaction reagents by
bacterial DNA. It has been our experience that
nanobacteria actually inhibit the amplification of
exogenous classical bacterial DNA by polymerase chain
reaction methods.

Cisar ¢r al. [17°] did not analyse the antigenicity and
infectivity of the particles they claimed were nanobac-
teria. Our studies have revealed specific nanobacteria
(protein) antigens that result in an immune response in
animals and humans. There is one verifiable case of
human seroconversion after laboratory exposure to
nanobacteria. Rats housed in the same cage became
infected when only one animal was inoculated with
nanobacteria. Apatite is a normal body constituent
known to be non-immunogenic and non-infectious,
which we have verified in rats and rabbits (unpublished
results). Our ongoing studies indicate that approximately
10% of adult healthy people in Scandinavia have

antinanobacteria antibodies, whereas patient groups with
kidney diseases and atherosclerosis have a much higher
incidence of antibodies against nanobacteria. It is thus
plausible that nanobacteria are human pathogens.

Nanobacteria and pathogenesis of

kidney stones

Figure 1 shows similar apatite units produced in
nanobacterial cultures and in human apatitic kidney
stones. Both grow as layers of mineral and matrix [5].
Figure 2 shows a simplified contemporary scheme for
stone formation. The following observations support a
role for nanobacteria in nephrolithiasis. Nanobacteria are
renotropic: Tc-labelled nanobacteria were eliminated
from the body via uptake to kidney tissue from the
blood, and were transported to urine in a process lasting
approximately 15 min [22]. They retained their Tc label
and culturability during excretion. Nanobacteria can be
cultured in urine or artificial urine [15], and look like
Carr’s concretions (see legend to Fig. 2). Apatitic
particles are the predominant crystal type in the urine
of both controls and recurrent stone-formers. However,
crystalluria appears to form at a lower urinary ionic
concentration in stone-formers [23], suggesting a higher
crystallization potency in stone-formers, i.e. active nidi or
weaker crystallization inhibitor activity. Nanobacteria
may thus represent transportable apatitic nidi from blood
to kidney tissue and tubuli.

Collections of Carr’s concretions probably adhere to
epithelia in the collecting tubuli or near papilla, as
observed with Randall’s plaques. Adhesion may require
previous cellular injury [24]. Phosphatidylserine is
ordinarily confined to the inner leaflet of the plasma
membrane, but is relocated in apoptotic cells to the cell
surface, where it may act as a binding site for
nanobacteria. Nanobacteria do adhere to cells and can
cause apoptotic injury [6], especially in collecting tubuli
[22]. Calcium oxalate monohydrate and hydroxyapatite
crystals rapidly adhere to anionic sites on the surface of
cultured renal epithelial cells, but this process is
inhibited by specific urinary anions, such as citrate,
glycosaminoglycans, uropontin, bikunin [25°] or nephro-
calcin, each of which coat the crystals. Competition for
the crystal surface could thus determine if a crystal binds
to a tubular cell [26]. A novel protein closely related to
nucleolin was recently identified as a possible receptor
for the binding of apatite crystals [27]. Once present on
the cell surface, crystals are internalized by renal cells
[28°]. Crystals may be dissolved slowly or may infest
cells and tissue as Randall’s plaques. Randall’s plaques
are found most frequently in patients with calcium salt
stones and abnormalities in their urinary milicu [29°].
Randall’s plaques may start stone formation as a nucleus
for deposits of calcium salts, depending on supersatura-
tions in urine.



Figure 1. Scanning electron microscope images of human kidney
stone and nanobacteria

(@)
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(b)

(@) Human kidney stone composed of carbonate apatite units, and (b)
cultured nanobacteria showing similar apatite units. Bar=10 um. Similar
pictures have been published by Kajander and Ciftcioglu [5] and
Ciftcioglu et al. [19°°].

Nanobacteria Kajander et al. 3

Hypothesis of nanobacterial kidney

stone formation

Figure 3 places nanobacteria in the array of over-
lapping factors known either to inhibit or promote
kidney stone formation. In the context of these factors,
nanobacteria would add novel aspects to kidney
calcification. First, a robust apatite nucleator, such as
a nanobacterium, may overwhelm (either chronically or
episodically) otherwise marginally effective anti-nuclea-
tion factors in vulnerable individuals. Second, nucleat-
ing particles (nanobacteria) may be transported from
the blood into the urine. Any infection by nanobacteria
at any place in the body might thus provoke kidney
stones or even calcification at the original site of
infection. Third, anti-nanobacterial treatment strategies
may be explored in patients susceptible to kidney
stones. Nanobacteria are sensitive to tetracycline class
antibiotics 7z vitro, but clinical trials are necessary to
clarify treatment regimens and outcome [10]. Some
nucleoside analogues, such as 5-fluorouracil, are effec-
tive iz vifro against nanobacteria (our unpublished
data) suggesting that antiviral, antimycotic and anti-
metabolite agents should be screened as drugs or drug
combinations.

Important evidence for the hypothesis comes from two
recent papers. An association with kidney stone
formation was established by detecting nanobacteria
in 70 out of 72 kidney stones [19°°]. Interestingly,
apatite stones gave the highest immunopositivity for
nanobacteria, but overall nanobacteria positivity did
not depend on the stone type. Garcia Cuerpo ef al.
[18°°] developed a translumbar, percutaneous renal
puncture method for the injection of materials into the
kidney without antibiotic coverage. Using this techni-
que, rats developed kidney stones in a nanobacteria
inoculum-dependent manner. Such findings are re-
quired to prove Koch’s postulates linking nanobacteria
to kidney stone formation. Larger scale animal studies
using this elegant model are required to confirm
causality and to serve as a basis for tests of anti-
nanobacterial therapies.

The life-long prevalence of kidney stones appears to
have increased throughout the whole 20th century, and
occurs in up to 15% of the population [30]. Treatment
of kidney stones has been estimated to cost over
US$3000 per patient per year [31]. The incidence of
new cases and recurrences may continue to rise.
Therefore, new approaches in treatment and preven-
tion could have a huge economic effect, apart from
benefits in terms of reduced morbidity. Interestingly, a
high prevalence of kidney calcifications is observed in
polycystic kidney disease (PKD) [32°]. Could nano-
bacteria also contribute to the pathology of this
disease?
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Figure 2. Formation of kidney stone in a renal papilla

Carr's concretions are small calcium
phosphate spheres often found in normal
collecting ducts. Collections of Carr’s
concretions form shining Randall's plaques
near the tip of papilla. Detached Randall's
plagues may act as a nucleus of stone
formation. Stone grows as calcium salts and
matrix form new layers on the stone surface.
Adapted from Blandy [21], with permission.
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Infectious agents/microbial toxins as
contributors to renal cyst formation

Modern methods and new concepts of pathogenic
mechanisms for infectious agents and microbial toxins,
released during infection or present in food, reveal a
greater than anticipated role of such agents in causing
chronic disease [14,33-35,36°37°]. PKD, the most
common autosomal dominant disease in humans, can
be viewed simultaneously as a genetic disease with
variable expression [38,39°40-42], a neoplastic process
[43], and an infectious disease or microbial toxicosis
[44°°45,46,47°%]. There are reports of endotoxin
[44°°,45], nanobacteria [44°°], and fungal antigens and
antibodies [46] in human kidney cyst fluids. The
presence of such microbiological material in human cyst
fluids cannot be dismissed as innocuous, because the
perceived anomalies of PKD are plausibly related to the

reported biological effects of endotoxins and mycotoxins
found or logically inferred from findings in PKD kidneys
[47°°,48,49°,50-53] (Fig. 4). However, plausibility does
not prove causality, even when yet to be defined
environmental factors are thought to alter the progres-
sion of PKD [38,41,42]. Future research will need to
address the issue of exposure to infectious agents/toxins
relative to the onset of cystogenesis.

Infectious agents or microbial toxins could influence the
expression of PKD in two ways: by causing the first or
second mutations in PKD genes or by establishing a
tissue environment in which cells with one or more PKD
gene mutations cannot adequately repair tissue damage
[54-57]. In the first case, PKD cysts have been described
as ‘fluid-filled tumors’ [41,43] associated with a ‘two-hit
model’ for PKD mutagenesis [58]. Mutagenesis in PKD
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The endotoxins and fungal antigens present in the
human PKD kidney are plausibly derived from the
gastrointestinal tract [44°*]. A preliminary report of
nanobacteria in marine, pond, and potable water [15]
makes ingestion a possible route of exposure. Anomalies
of the colon referred to as diverticula are reported to
occur in 80% of PKD patients [73]. The PKD colon may
be the initial domino in the progression of events leading
to cystogenesis: (1) damage to gut barriers; (ii) enhanced
absorption of colonic microbial and diet-derived cysto-
genic materials; (iii) actions of absorbed microbial
materials on kidney and liver cyst formation and
vasculature aneurysms. Although widely thought to be
abnormal [41], a clear demonstration that the PKD colon
is continuously or episodically ‘leaky’ has yet to be
provided.

What cellular toxicity caused by microbial agents/toxins
might account for renal cystogenesis? Apatite-coated
nanobacteria are renotropic, and cause damage to the
renal collecting tubules [22]. Although nanobacteria from
human PKD cysts give a positive differential Limulus
amebocyte lysate test for endotoxin and immunoblot
assays for chlamydial lipopolysaccharide (LLPS: endotox-
in) and Bartonella henselae antigens, it is not known
whether these constituents are products of nanobacterial
metabolism [44°°]. Microbial components are known to
bind to apatite, a property useful in assays applicable to
the detection of microbial contamination of meat [76].
Nanobacteria with toxins are presented to the kidney,
either as products of nanobacterial metabolism or
absorbance of microbial material present in saliva, the
colon, and the environment (Fig. 2). The extraction and
carriage of toxins in foods (e.g. fumonisin [49°,64°°]) by
nanobacteria or other particles to the kidney represents a
potential new link between diet and kidney diseases.

In PKD, the tissue distribution of lesions follows the
expression of polycystins. Kidney tubule epithelium,
vasculature, and gut epithelium express polycystin 1
[57,60], a transmembrane protein that exhibits domains
(e.g. C-type lectins), which in other proteins (e.g. C-type
collectins) mediate the binding of microbes. On the basis
of these descriptions of polycystin 1, we posited that
microbial components may bind to polycystin 1 and
thereby localize to tissues expressing polycystin [46],
ultimately causing cysts, aneurysms, or diverticula. The
relative efficiency of normal versus aberrant polycystins
in binding nanobacteria or microbial toxins is unknown.
Microbe-induced damage to PKD cells results in cells
that poorly conduct tissue repair and yield altered tissue
structure [74].

Tubule obstruction is proposed by Tanner ez a/. [77] to
be an early event in cystogenesis. In Fig. 2, the trapping
of nanobacteria in a tubule obstructed as a result of

nanobacterial cytotoxicity may provide selection pressure
for the emergence of progressively more cystic cell
types: cytoresistant [61,62] PKD cells intrinsically
defective in repairing tissue [74]. A similar model might
also explain simple kidney cysts, in which a lack of
genetic vulnerability limits cyst formation to an indivi-
dual nephron. Evidence of nanobacteria or antigens has
been found in simple and PKD kidney cysts, PKD liver
cysts, and human pineal cyst fluids [44°°,78].

Nanobacteria bind to and are internalized by human
PKD cells iz vitro [44°*]. The release of apatite-bound
toxins would occur after internalization in endocytic
vesicles as a result of the acidic pH that would etch
apatite. In fibroblasts, a cell type that expresses
polycystin [57], internalization is required before cyto-
toxicity is observed [6]. In models of nephrolithiasis and
cystogenesis, cellular digestion of oxalate stones is
reported to cause the release of cytotoxic free radicals,
leading to cytotoxicity [79,80]. Therefore, continued
research into nanobacteria and related concepts of
‘particulate vectors for toxin absorption, concentration,
and delivery’ may yield new insights into an array of
diseases in which tissue calcification, mutagenesis, or
cystogenesis are important [81].

Conclusion

Nanobacteria remain controversial agents that mediate
apatite nucleation and crystal growth. They are reno-
tropic, cause apoptotic cell death, are present in human
kidney stones and kidney cyst fluids. They may trigger
renal pathology involving damage to tubular epithelium,
biomineralization, and perhaps tubule obstruction and
chronic infection, resulting in defective tissue repair.
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